32 research outputs found

    Sampling, Intervention, Prediction, Aggregation: A Generalized Framework for Model-Agnostic Interpretations

    Full text link
    Model-agnostic interpretation techniques allow us to explain the behavior of any predictive model. Due to different notations and terminology, it is difficult to see how they are related. A unified view on these methods has been missing. We present the generalized SIPA (sampling, intervention, prediction, aggregation) framework of work stages for model-agnostic interpretations and demonstrate how several prominent methods for feature effects can be embedded into the proposed framework. Furthermore, we extend the framework to feature importance computations by pointing out how variance-based and performance-based importance measures are based on the same work stages. The SIPA framework reduces the diverse set of model-agnostic techniques to a single methodology and establishes a common terminology to discuss them in future work

    Visualizing the Feature Importance for Black Box Models

    Full text link
    In recent years, a large amount of model-agnostic methods to improve the transparency, trustability and interpretability of machine learning models have been developed. We introduce local feature importance as a local version of a recent model-agnostic global feature importance method. Based on local feature importance, we propose two visual tools: partial importance (PI) and individual conditional importance (ICI) plots which visualize how changes in a feature affect the model performance on average, as well as for individual observations. Our proposed methods are related to partial dependence (PD) and individual conditional expectation (ICE) plots, but visualize the expected (conditional) feature importance instead of the expected (conditional) prediction. Furthermore, we show that averaging ICI curves across observations yields a PI curve, and integrating the PI curve with respect to the distribution of the considered feature results in the global feature importance. Another contribution of our paper is the Shapley feature importance, which fairly distributes the overall performance of a model among the features according to the marginal contributions and which can be used to compare the feature importance across different models.Comment: To Appear in Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10 to 14, 2018, Proceedings, Part

    Inverse Classification for Comparison-based Interpretability in Machine Learning

    Full text link
    In the context of post-hoc interpretability, this paper addresses the task of explaining the prediction of a classifier, considering the case where no information is available, neither on the classifier itself, nor on the processed data (neither the training nor the test data). It proposes an instance-based approach whose principle consists in determining the minimal changes needed to alter a prediction: given a data point whose classification must be explained, the proposed method consists in identifying a close neighbour classified differently, where the closeness definition integrates a sparsity constraint. This principle is implemented using observation generation in the Growing Spheres algorithm. Experimental results on two datasets illustrate the relevance of the proposed approach that can be used to gain knowledge about the classifier.Comment: preprin

    Explanations of Black-Box Model Predictions by Contextual Importance and Utility

    Full text link
    The significant advances in autonomous systems together with an immensely wider application domain have increased the need for trustable intelligent systems. Explainable artificial intelligence is gaining considerable attention among researchers and developers to address this requirement. Although there is an increasing number of works on interpretable and transparent machine learning algorithms, they are mostly intended for the technical users. Explanations for the end-user have been neglected in many usable and practical applications. In this work, we present the Contextual Importance (CI) and Contextual Utility (CU) concepts to extract explanations that are easily understandable by experts as well as novice users. This method explains the prediction results without transforming the model into an interpretable one. We present an example of providing explanations for linear and non-linear models to demonstrate the generalizability of the method. CI and CU are numerical values that can be represented to the user in visuals and natural language form to justify actions and explain reasoning for individual instances, situations, and contexts. We show the utility of explanations in car selection example and Iris flower classification by presenting complete (i.e. the causes of an individual prediction) and contrastive explanation (i.e. contrasting instance against the instance of interest). The experimental results show the feasibility and validity of the provided explanation methods

    Local Interpretation Methods to Machine Learning Using the Domain of the Feature Space

    Full text link
    As machine learning becomes an important part of many real world applications affecting human lives, new requirements, besides high predictive accuracy, become important. One important requirement is transparency, which has been associated with model interpretability. Many machine learning algorithms induce models difficult to interpret, named black box. Moreover, people have difficulty to trust models that cannot be explained. In particular for machine learning, many groups are investigating new methods able to explain black box models. These methods usually look inside the black models to explain their inner work. By doing so, they allow the interpretation of the decision making process used by black box models. Among the recently proposed model interpretation methods, there is a group, named local estimators, which are designed to explain how the label of particular instance is predicted. For such, they induce interpretable models on the neighborhood of the instance to be explained. Local estimators have been successfully used to explain specific predictions. Although they provide some degree of model interpretability, it is still not clear what is the best way to implement and apply them. Open questions include: how to best define the neighborhood of an instance? How to control the trade-off between the accuracy of the interpretation method and its interpretability? How to make the obtained solution robust to small variations on the instance to be explained? To answer to these questions, we propose and investigate two strategies: (i) using data instance properties to provide improved explanations, and (ii) making sure that the neighborhood of an instance is properly defined by taking the geometry of the domain of the feature space into account. We evaluate these strategies in a regression task and present experimental results that show that they can improve local explanations

    ICIE 1.0:a novel tool for interactive contextual interaction explanations

    No full text
    With the rise of new laws around privacy and awareness, explanation of automated decision making becomes increasingly important. Nowadays, machine learning models are used to aid experts in domains such as banking and insurance to find suspicious transactions, approve loans and credit card applications. Companies using such systems have to be able to provide the rationale behind their decisions; blindly relying on the trained model is not sufficient. There are currently a number of methods that provide insights in models and their decisions, but often they are either good at showing global or local behavior. Global behavior is often too complex to visualize or comprehend, so approximations are shown, and visualizing local behavior is often misleading as it is difficult to define what local exactly means (i.e. our methods don’t “know” how easily a feature-value can be changed; which ones are flexible, and which ones are static). We introduce the ICIE framework (Interactive Contextual Interaction Explanations) which enables users to view explanations of individual instances under different contexts. We will see that various contexts for the same case lead to different explanations, revealing different feature interactions.</p

    Meaningful Data Sampling for a Faithful Local Explanation Method

    No full text
    Data sampling has an important role in the majority of local explanation methods. Generating neighborhood samples using either the Gaussian distribution or the distribution of training data is a widely-used procedure in the tabular data case. Generally, this approach has several weaknesses: first, it produces a uniform data which may not represent the actual distribution of samples; second, disregarding the interaction between features tends to create unlikely samples; and third, it may fail to define a compact and diverse locality for the sample being explained. In this paper, we propose a sampling methodology based on observation-level feature importance to derive more meaningful perturbed samples. To evaluate the efficiency of the proposed approach we applied it to the LIME explanation method. The conducted experiments demonstrate considerable improvements in terms of fidelity and explainability
    corecore